MVN¶
Versioned name : MVN-6
Category : Normalization
Short description : Calculates mean-variance normalization of the input tensor.
Detailed description
MVN subtracts mean value from the input blob:
If normalize_variance is set to true
, the output blob is divided by variance. When normalizing the value, the number eps
is added to the variance to avoid division by zero. According to the eps_mode
flag’s value, eps
is added inside or outside the sqrt:
If
eps_mode
isinside_sqrt
:\[o_{i}=\frac{o_{i}}{\sqrt {\sum {o_{k}^2}+\epsilon}}\]If
eps_mode
isoutside_sqrt
:\[o_{i}=\frac{o_{i}}{\sqrt {\sum {o_{k}^2}}+\epsilon}\]
Attributes
normalize_variance
Description : normalize_variance is a flag that specifies whether to perform variance normalization.
Range of values :
false
- do not normalize variancetrue
- normalize variance
Type :
boolean
Required : yes
eps
Description : eps is the number to be added to the variance to avoid division by zero when normalizing the value.
Range of values : a positive floating-point number
Type :
float
Required : yes
eps_mode
Description : Choose where to add epsilon.
Range of values :
inside_sqrt
- add epsilon inside sqrtoutside_sqrt
- add epsilon outside of sqrt
Type :
string
Required : yes
Inputs
1 :
data
- Input tensor to be normalized of type T and arbitrary shape. Required.2 :
axes
- 1D tensor which specifies indices of dimensions indata
that define normalization slices. Allowed range of axes is[-r; r-1]
wherer = rank(data)
, the order can be not sorted. Negative value means counting dimensions from the back. Type T_IND. Required.
Outputs
1 : Output tensor of the same shape and type as the
data
input tensor.
Types
T : any floating point type.
T_IND :
int64
orint32
.
Example
<layer ... type="MVN">
<data eps="1e-9" eps_mode="inside_sqrt" normalize_variance="true"/>
<input>
<port id="0">
<dim>6</dim>
<dim>12</dim>
<dim>10</dim>
<dim>24</dim>
</port>
<port id="1">
<dim>3</dim> <!-- value of [0,2,3] means independent normalization per channels -->
</port>
</input>
<output>
<port id="2">
<dim>6</dim>
<dim>12</dim>
<dim>10</dim>
<dim>24</dim>
</port>
</output>
</layer>