Model Creation C++ Sample

This sample demonstrates how to execute an synchronous inference using model built on the fly which uses weights from LeNet classification model, which is known to work well on digit classification tasks.

You do not need an XML file to create a model. The API of ov::Model allows creating a model on the fly from the source code.

The following C++ API is used in the application:

Feature

API

Description

OpenVINO Runtime Info

ov::Core::get_versions

Get device plugins versions

Shape Operations

ov::Output::get_shape , ov::Shape::size , ov::shape_size

Operate with shape

Tensor Operations

ov::Tensor::get_byte_size , ov::Tensor:data

Get tensor byte size and its data

Model Operations

ov::set_batch

Operate with model batch size

Infer Request Operations

ov::InferRequest::get_input_tensor

Get a input tensor

Model creation objects

ov::opset8::Parameter , ov::Node::output , ov::opset8::Constant , ov::opset8::Convolution , ov::opset8::Add , ov::opset1::MaxPool , ov::opset8::Reshape , ov::opset8::MatMul , ov::opset8::Relu , ov::opset8::Softmax , ov::descriptor::Tensor::set_names , ov::opset8::Result , ov::Model , ov::ParameterVector::vector

Used to construct an OpenVINO model

Basic OpenVINO™ Runtime API is covered by Hello Classification C++ sample.

Options

Values

Validated Models

LeNet

Model Format

model weights file (*.bin)

Validated images

single-channel MNIST ubyte images

Supported devices

All

Other language realization

Python

How It Works

At startup, the sample application does the following:

  • Reads command line parameters

  • Build a Model and passed weights file

  • Loads the model and input data to the OpenVINO™ Runtime plugin

  • Performs synchronous inference and processes output data, logging each step in a standard output stream

You can see the explicit description of each sample step at Integration Steps section of “Integrate OpenVINO™ Runtime with Your Application” guide.

Building

To build the sample, please use instructions available at Build the Sample Applications section in OpenVINO™ Toolkit Samples guide.

Running

model_creation_sample <path_to_lenet_weights> <device>

NOTES :

  • you can use LeNet model weights in the sample folder: lenet.bin with FP32 weights file

  • The lenet.bin with FP32 weights file was generated by the Model Optimizer tool from the public LeNet model with the --input_shape [64,1,28,28] parameter specified.

The original model is available in the Caffe* repository on GitHub*.

You can do inference of an image using a pre-trained model on a GPU using the following command:

model_creation_sample lenet.bin GPU

Sample Output

The sample application logs each step in a standard output stream and outputs top-10 inference results.

[ INFO ] OpenVINO Runtime version ......... <version>
[ INFO ] Build ........... <build>
[ INFO ]
[ INFO ] Device info:
[ INFO ] GPU
[ INFO ] Intel GPU plugin version ......... <version>
[ INFO ] Build ........... <build>
[ INFO ]
[ INFO ]
[ INFO ] Create model from weights: lenet.bin
[ INFO ] model name: lenet
[ INFO ]     inputs
[ INFO ]         input name: NONE
[ INFO ]         input type: f32
[ INFO ]         input shape: {64, 1, 28, 28}
[ INFO ]     outputs
[ INFO ]         output name: output_tensor
[ INFO ]         output type: f32
[ INFO ]         output shape: {64, 10}
[ INFO ] Batch size is 10
[ INFO ] model name: lenet
[ INFO ]     inputs
[ INFO ]         input name: NONE
[ INFO ]         input type: u8
[ INFO ]         input shape: {10, 28, 28, 1}
[ INFO ]     outputs
[ INFO ]         output name: output_tensor
[ INFO ]         output type: f32
[ INFO ]         output shape: {10, 10}
[ INFO ] Compiling a model for the GPU device
[ INFO ] Create infer request
[ INFO ] Combine images in batch and set to input tensor
[ INFO ] Start sync inference
[ INFO ] Processing output tensor

Top 1 results:

Image 0

classid probability label
------- ----------- -----
0       1.0000000   0

Image 1

classid probability label
------- ----------- -----
1       1.0000000   1

Image 2

classid probability label
------- ----------- -----
2       1.0000000   2

Image 3

classid probability label
------- ----------- -----
3       1.0000000   3

Image 4

classid probability label
------- ----------- -----
4       1.0000000   4

Image 5

classid probability label
------- ----------- -----
5       1.0000000   5

Image 6

classid probability label
------- ----------- -----
6       1.0000000   6

Image 7

classid probability label
------- ----------- -----
7       1.0000000   7

Image 8

classid probability label
------- ----------- -----
8       1.0000000   8

Image 9

classid probability label
------- ----------- -----
9       1.0000000   9

Deprecation Notice

Deprecation Begins

June 1, 2020

Removal Date

December 1, 2020

See Also