openvino.inference_engine.ExecutableNetwork¶
- class openvino.inference_engine.ExecutableNetwork¶
This class represents a network instance loaded to plugin and ready for inference.
- __init__()¶
There is no explicit class constructor. To make a valid instance of
ExecutableNetwork
, useIECore.load_network()
method of theIECore
class.
Methods
__delattr__
(name, /)Implement delattr(self, name).
__dir__
()Default dir() implementation.
__eq__
(value, /)Return self==value.
__format__
(format_spec, /)Default object formatter.
__ge__
(value, /)Return self>=value.
__getattribute__
(name, /)Return getattr(self, name).
__gt__
(value, /)Return self>value.
__hash__
()Return hash(self).
There is no explicit class constructor.
This method is called when a class is subclassed.
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__new__
(**kwargs)ExecutableNetwork.__reduce_cython__(self)
__reduce_ex__
(protocol, /)Helper for pickle.
__repr__
()Return repr(self).
__setattr__
(name, value, /)Implement setattr(self, name, value).
ExecutableNetwork.__setstate_cython__(self, __pyx_state)
Size of object in memory, in bytes.
__str__
()Return str(self).
Abstract classes can override this to customize issubclass().
export
(self, unicode model_file)Exports the current executable network.
get_config
(self, unicode config_name)Gets configuration for current executable network.
get_exec_graph_info
(self)Gets executable graph information from a device
get_idle_request_id
(self)Get idle request ID
get_metric
(self, unicode metric_name)Gets general runtime metric for an executable network.
infer
(self[, inputs])Starts synchronous inference for the first infer request of the executable network and returns output data.
set_config
(self, dict config)start_async
(self, request_id[, inputs])Starts asynchronous inference for specified infer request.
wait
(self[, num_requests, timeout])Waits when the result from any request becomes available.
Attributes
_infer_requests: object
_requests: object
A dictionary that maps input layer names to InputInfoCPtr objects
A dictionary that maps output layer names to CDataPtr objects
A tuple of
InferRequest
instances- __class__¶
alias of
type
- __delattr__(name, /)¶
Implement delattr(self, name).
- __dir__()¶
Default dir() implementation.
- __eq__(value, /)¶
Return self==value.
- __format__(format_spec, /)¶
Default object formatter.
- __ge__(value, /)¶
Return self>=value.
- __getattribute__(name, /)¶
Return getattr(self, name).
- __gt__(value, /)¶
Return self>value.
- __hash__()¶
Return hash(self).
- __init__()¶
There is no explicit class constructor. To make a valid instance of
ExecutableNetwork
, useIECore.load_network()
method of theIECore
class.
- __init_subclass__()¶
This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
- __le__(value, /)¶
Return self<=value.
- __lt__(value, /)¶
Return self<value.
- __ne__(value, /)¶
Return self!=value.
- __new__(**kwargs)¶
- __pyx_vtable__ = <capsule object NULL>¶
- __reduce__()¶
ExecutableNetwork.__reduce_cython__(self)
- __reduce_ex__(protocol, /)¶
Helper for pickle.
- __repr__()¶
Return repr(self).
- __setattr__(name, value, /)¶
Implement setattr(self, name, value).
- __setstate__()¶
ExecutableNetwork.__setstate_cython__(self, __pyx_state)
- __sizeof__()¶
Size of object in memory, in bytes.
- __str__()¶
Return str(self).
- __subclasshook__()¶
Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
- _infer_requests¶
_infer_requests: object
- _requests¶
_requests: object
- export(self, unicode model_file: str)¶
Exports the current executable network.
- Parameters
model_file – Full path to the target exported file location
- Returns
None
ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) exec_net = ie.load_network(network=net, device_name="MYRIAD", num_requests=2) exec_net.export(path_to_file_to_save)
- get_config(self, unicode config_name: str)¶
Gets configuration for current executable network. The method is responsible to extract information which affects executable network execution
- Parameters
config_name – A configuration parameter name to request.
- Returns
A configuration value corresponding to a configuration key.
Usage example:
ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) exec_net = ie.load_network(net, "CPU") config = exec_net.get_config("CPU_BIND_THREAD")
- get_exec_graph_info(self)¶
Gets executable graph information from a device
- Returns
An instance of
IENetwork
Usage example:
ie_core = IECore() net = ie_core.read_network(model=path_to_xml_file, weights=path_to_bin_file) exec_net = ie_core.load_network(net, device, num_requests=2) exec_graph = exec_net.get_exec_graph_info()
- get_idle_request_id(self)¶
Get idle request ID
- Returns
Request index
- get_metric(self, unicode metric_name: str)¶
Gets general runtime metric for an executable network. It can be network name, actual device ID on which executable network is running or all other properties which cannot be changed dynamically.
- Parameters
metric_name – A metric name to request.
- Returns
A metric value corresponding to a metric key.
Usage example:
ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) exec_net = ie.load_network(net, "CPU") exec_net.get_metric("NETWORK_NAME")
- infer(self, inputs=None)¶
Starts synchronous inference for the first infer request of the executable network and returns output data. Wraps
InferRequest.infer()
method of theInferRequest
class- Parameters
inputs – A dictionary that maps input layer names to
numpy.ndarray
objects of proper shape with input data for the layer- Returns
A dictionary that maps output layer names to
numpy.ndarray
objects with output data of the layer
Usage example:
ie_core = IECore() net = ie_core.read_network(model=path_to_xml_file, weights=path_to_bin_file) exec_net = ie_core.load_network(network=net, device_name="CPU", num_requests=2) res = exec_net.infer({'data': img}) res {'prob': array([[[[2.83426580e-08]], [[2.40166020e-08]], [[1.29469613e-09]], [[2.95946148e-08]] ...... ]])}
- input_info¶
A dictionary that maps input layer names to InputInfoCPtr objects
- outputs¶
A dictionary that maps output layer names to CDataPtr objects
- requests¶
A tuple of
InferRequest
instances
- set_config(self, dict config: dict)¶
- start_async(self, request_id, inputs=None)¶
Starts asynchronous inference for specified infer request. Wraps
InferRequest.async_infer()
method of theInferRequest
class.- Parameters
request_id – Index of infer request to start inference
inputs – A dictionary that maps input layer names to
numpy.ndarray
objects of proper shape with input data for the layer
- Returns
A handler of specified infer request, which is an instance of the
InferRequest
class.
Usage example:
infer_request_handle = exec_net.start_async(request_id=0, inputs={input_blob: image}) infer_status = infer_request_handle.wait() res = infer_request_handle.output_blobs[out_blob_name]
- wait(self, num_requests=None, timeout=None)¶
Waits when the result from any request becomes available. Blocks until specified timeout elapses or the result.
- Parameters
num_requests – Number of idle requests for which wait. If not specified, num_requests value is set to number of requests by default.
timeout – Time to wait in milliseconds or special (0, -1) cases described above. If not specified, timeout value is set to -1 by default.
- Returns
Request status code: OK or RESULT_NOT_READY