regnetx-3.2gf¶
Use Case and High-Level Description¶
The regnetx-3.2gf
model is one of the RegNetX design space
models designed to perform image classification. The RegNet design space provides simple and fast networks that work well across a wide
range of flop regimes. This model was pre-trained in PyTorch*. All RegNet classification models have been pre-trained on the ImageNet dataset. For details about this family of models, check out the Codebase for Image Classification Research.
Specification¶
Metric |
Value |
---|---|
Type |
Classification |
GFLOPs |
6.3893 |
MParams |
15.2653 |
Source framework |
PyTorch* |
Accuracy¶
Metric |
Original model |
Converted model |
---|---|---|
Top 1 |
78.15% |
78.15% |
Top 5 |
94.09% |
94.09% |
Input¶
Original model¶
Image, name - data
, shape - 1, 3, 224, 224
, format is B, C, H, W
, where:
B
- batch sizeC
- channelH
- heightW
- width
Channel order is BGR
.
Mean values - [103.53, 116.28, 123.675], scale values - [57.375, 57.12, 58.395].
Converted model¶
Image, name - data
, shape - 1, 3, 224, 224
, format is B, C, H, W
, where:
B
- batch sizeC
- channelH
- heightW
- width
Channel order is BGR
Output¶
Original model¶
Object classifier according to ImageNet classes, name - prob
, shape - 1, 1000
, output data format is B, C
, where:
B
- batch sizeC
- predicted probabilities for each class in logits format
Converted model¶
Object classifier according to ImageNet classes, name - prob
, shape - 1, 1000
, output data format is B, C
, where:
B
- batch sizeC
- predicted probabilities for each class in logits format
Download a Model and Convert it into OpenVINO™ IR Format¶
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>
An example of using the Model Converter:
omz_converter --name <model_name>
Demo usage¶
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
Legal Information¶
The original model is distributed under the following license:
MIT License
Copyright (c) Facebook, Inc. and its affiliates.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.