Working with Open Model Zoo Models¶
This tutorial shows how to download a model from the Open Model Zoo, convert it to OpenVINO’s IR format, show information about the model, and benchmark the model.
OpenVINO and Open Model Zoo Tools¶
The OpenVINO and Open Model Zoo tools are listed in the table below.
Tool |
Command |
Description |
---|---|---|
Model Downloader |
omz_download er |
Download models from Open Model Zoo |
Model Converter |
omz_converte r |
Convert Open Model Zoo models to OpenVINO’s IR format |
Info Dumper |
omz_info_dum per |
Print information about Open Model Zoo models |
Benchmark Tool |
benchmark_ap p |
Benchmark model performance by computing inference time |
Preparation¶
Model Name¶
Set model_name
to the name of the Open Model Zoo model to use in
this notebook. Refer to the list of
public
and
Intel
pre-trained models for a full list of models that can be used. Set the
model_name
to the model you want to use.
# model_name = "resnet-50-pytorch"
model_name = "mobilenet-v2-pytorch"
Imports¶
import json
import sys
from pathlib import Path
from IPython.display import Markdown, display
from openvino.runtime import Core
sys.path.append("../utils")
from notebook_utils import DeviceNotFoundAlert, NotebookAlert
Settings and Configuration¶
Set the file and directory paths. By default, this demo notebook
downloads models from Open Model Zoo to a directory
open_model_zoo_models
in your $HOME
directory. On Windows, the
$HOME directory is usually c:\users\username
, on Linux
/home/username
. If you want to change the folder, change
base_model_dir
in the cell below.
You can change the following settings:
base_model_dir
: Models will be downloaded into theintel
andpublic
folders in this directory.omz_cache_dir
: Cache folder for Open Model Zoo. Specifying a cache directory is not required for Model Downloader and Model Converter, but it speeds up subsequent downloads.precision
: If specified, only models with this precision will be downloaded and converted.
base_model_dir = Path("~/open_model_zoo_models").expanduser()
omz_cache_dir = Path("~/open_model_zoo_cache").expanduser()
precision = "FP16"
# Check if an iGPU is available on this system to use with Benchmark App
ie = Core()
gpu_available = "GPU" in ie.available_devices
print(
f"base_model_dir: {base_model_dir}, omz_cache_dir: {omz_cache_dir}, gpu_availble: {gpu_available}"
)
base_model_dir: /home/runner/open_model_zoo_models, omz_cache_dir: /home/runner/open_model_zoo_cache, gpu_availble: False
Download Model from Open Model Zoo¶
Specify, display and run the Model Downloader command to download the model
## Uncomment the next line to show omz_downloader's help which explains the command line options
# !omz_downloader --help
download_command = (
f"omz_downloader --name {model_name} --output_dir {base_model_dir} --cache_dir {omz_cache_dir}"
)
display(Markdown(f"Download command: `{download_command}`"))
display(Markdown(f"Downloading {model_name}..."))
! $download_command
Download command:
omz_downloader --name mobilenet-v2-pytorch --output_dir /home/runner/open_model_zoo_models --cache_dir /home/runner/open_model_zoo_cache
Downloading mobilenet-v2-pytorch…
################|| Downloading mobilenet-v2-pytorch ||################
========== Downloading /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/mobilenet_v2-b0353104.pth
Convert Model to OpenVINO IR format¶
Specify, display and run the Model Converter command to convert the
model to IR format. Model Conversion may take a while. The output of the
Model Converter command will be displayed. Conversion succeeded if the
last lines of the output include
[ SUCCESS ] Generated IR version 11 model.
For downloaded models
that are already in IR format, conversion will be skipped.
## Uncomment the next line to show omz_converter's help which explains the command line options
# !omz_converter --help
convert_command = f"omz_converter --name {model_name} --precisions {precision} --download_dir {base_model_dir} --output_dir {base_model_dir}"
display(Markdown(f"Convert command: `{convert_command}`"))
display(Markdown(f"Converting {model_name}..."))
! $convert_command
Convert command:
omz_converter --name mobilenet-v2-pytorch --precisions FP16 --download_dir /home/runner/open_model_zoo_models --output_dir /home/runner/open_model_zoo_models
Converting mobilenet-v2-pytorch…
========== Converting mobilenet-v2-pytorch to ONNX
Conversion to ONNX command: /opt/hostedtoolcache/Python/3.8.12/x64/bin/python -- /opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/openvino/model_zoo/internal_scripts/pytorch_to_onnx.py --model-name=mobilenet_v2 --weights=/home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/mobilenet_v2-b0353104.pth --import-module=torchvision.models --input-shape=1,3,224,224 --output-file=/home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/mobilenet-v2.onnx --input-names=data --output-names=prob
ONNX check passed successfully.
========== Converting mobilenet-v2-pytorch to IR (FP16)
Conversion command: /opt/hostedtoolcache/Python/3.8.12/x64/bin/python -- /opt/hostedtoolcache/Python/3.8.12/x64/bin/mo --framework=onnx --data_type=FP16 --output_dir=/home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16 --model_name=mobilenet-v2-pytorch --input=data '--mean_values=data[123.675,116.28,103.53]' '--scale_values=data[58.624,57.12,57.375]' --reverse_input_channels --output=prob --input_model=/home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/mobilenet-v2.onnx '--layout=data(NCHW)' '--input_shape=[1, 3, 224, 224]'
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/mobilenet-v2.onnx
- Path for generated IR: /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16
- IR output name: mobilenet-v2-pytorch
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: data
- Output layers: prob
- Input shapes: [1, 3, 224, 224]
- Source layout: Not specified
- Target layout: Not specified
- Layout: data(NCHW)
- Mean values: data[123.675,116.28,103.53]
- Scale values: data[58.624,57.12,57.375]
- Scale factor: Not specified
- Precision of IR: FP16
- Enable fusing: True
- User transformations: Not specified
- Reverse input channels: True
- Enable IR generation for fixed input shape: False
- Use the transformations config file: None
Advanced parameters:
- Force the usage of legacy Frontend of Model Optimizer for model conversion into IR: False
- Force the usage of new Frontend of Model Optimizer for model conversion into IR: False
OpenVINO runtime found in: /opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/openvino
OpenVINO runtime version: 2022.1.0-7019-cdb9bec7210-releases/2022/1
Model Optimizer version: 2022.1.0-7019-cdb9bec7210-releases/2022/1
[ SUCCESS ] Generated IR version 11 model.
[ SUCCESS ] XML file: /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml
[ SUCCESS ] BIN file: /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.bin
[ SUCCESS ] Total execution time: 0.73 seconds.
[ SUCCESS ] Memory consumed: 95 MB.
It's been a while, check for a new version of Intel(R) Distribution of OpenVINO(TM) toolkit here https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html?cid=other&source=prod&campid=ww_2022_bu_IOTG_OpenVINO-2022-1&content=upg_all&medium=organic or on the GitHub*
[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.
Find more information about API v2.0 and IR v11 at https://docs.openvino.ai
Get Model Information¶
The Info Dumper prints the following information for Open Model Zoo models:
Model name
Description
Framework that was used to train the model
License URL
Precisions supported by the model
Subdirectory: the location of the downloaded model
Task type
This information can be shown by running
omz_info_dumper --name model_name
in a terminal. The information can
also be parsed and used in scripts.
In the next cell, we run Info Dumper and use json to load the information in a dictionary.
model_info_output = %sx omz_info_dumper --name $model_name
model_info = json.loads(model_info_output.get_nlstr())
if len(model_info) > 1:
NotebookAlert(
f"There are multiple IR files for the {model_name} model. The first model in the "
"omz_info_dumper output will be used for benchmarking. Change "
"`selected_model_info` in the cell below to select a different model from the list.",
"warning",
)
model_info
[{'name': 'mobilenet-v2-pytorch', 'composite_model_name': None, 'description': 'MobileNet V2 is image classification model pre-trained on ImageNet dataset. This is a PyTorch* implementation of MobileNetV2 architecture as described in the paper "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" <https://arxiv.org/abs/1801.04381>.nThe model input is a blob that consists of a single image of "1, 3, 224, 224" in "RGB" order.nThe model output is typical object classifier for the 1000 different classifications matching with those in the ImageNet database.', 'framework': 'pytorch', 'license_url': 'https://raw.githubusercontent.com/pytorch/vision/master/LICENSE', 'accuracy_config': '/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/openvino/model_zoo/models/public/mobilenet-v2-pytorch/accuracy-check.yml', 'model_config': '/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/openvino/model_zoo/models/public/mobilenet-v2-pytorch/model.yml', 'precisions': ['FP16', 'FP32'], 'quantization_output_precisions': ['FP16-INT8', 'FP32-INT8'], 'subdirectory': 'public/mobilenet-v2-pytorch', 'task_type': 'classification', 'input_info': [{'name': 'data', 'shape': [1, 3, 224, 224], 'layout': 'NCHW'}], 'model_stages': []}]
Having the model information in a JSON file allows us to extract the path to the model directory, and build the path to the IR file.
selected_model_info = model_info[0]
model_path = (
base_model_dir
/ Path(selected_model_info["subdirectory"])
/ Path(f"{precision}/{selected_model_info['name']}.xml")
)
print(model_path, "exists:", model_path.exists())
/home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml exists: True
Run Benchmark Tool¶
By default, Benchmark Tool runs inference for 60 seconds in asynchronous mode on CPU. It returns inference speed as latency (milliseconds per image) and throughput (frames per second) values.
## Uncomment the next line to show benchmark_app's help which explains the command line options
# !benchmark_app --help
benchmark_command = f"benchmark_app -m {model_path} -t 15"
display(Markdown(f"Benchmark command: `{benchmark_command}`"))
display(Markdown(f"Benchmarking {model_name} on CPU with async inference for 15 seconds..."))
! $benchmark_command
Benchmark command:
benchmark_app -m /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -t 15
Benchmarking mobilenet-v2-pytorch on CPU with async inference for 15 seconds…
[Step 1/11] Parsing and validating input arguments
[ WARNING ] -nstreams default value is determined automatically for a device. Although the automatic selection usually provides a reasonable performance, but it still may be non-optimal for some cases, for more information look at README.
[Step 2/11] Loading OpenVINO
[ WARNING ] PerformanceMode was not explicitly specified in command line. Device CPU performance hint will be set to THROUGHPUT.
[ INFO ] OpenVINO:
API version............. 2022.1.0-7019-cdb9bec7210-releases/2022/1
[ INFO ] Device info
CPU
openvino_intel_cpu_plugin version 2022.1
Build................... 2022.1.0-7019-cdb9bec7210-releases/2022/1
[Step 3/11] Setting device configuration
[ WARNING ] -nstreams default value is determined automatically for CPU device. Although the automatic selection usually provides a reasonable performance, but it still may be non-optimal for some cases, for more information look at README.
[Step 4/11] Reading network files
[ INFO ] Read model took 16.77 ms
[Step 5/11] Resizing network to match image sizes and given batch
[ INFO ] Network batch size: 1
[Step 6/11] Configuring input of the model
[ INFO ] Model input 'data' precision u8, dimensions ([N,C,H,W]): 1 3 224 224
[ INFO ] Model output 'prob' precision f32, dimensions ([...]): 1 1000
[Step 7/11] Loading the model to the device
[ INFO ] Compile model took 94.71 ms
[Step 8/11] Querying optimal runtime parameters
[ INFO ] DEVICE: CPU
[ INFO ] AVAILABLE_DEVICES , ['']
[ INFO ] RANGE_FOR_ASYNC_INFER_REQUESTS , (1, 1, 1)
[ INFO ] RANGE_FOR_STREAMS , (1, 2)
[ INFO ] FULL_DEVICE_NAME , Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz
[ INFO ] OPTIMIZATION_CAPABILITIES , ['WINOGRAD', 'FP32', 'FP16', 'INT8', 'BIN', 'EXPORT_IMPORT']
[ INFO ] CACHE_DIR ,
[ INFO ] NUM_STREAMS , 1
[ INFO ] INFERENCE_NUM_THREADS , 0
[ INFO ] PERF_COUNT , False
[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS , 0
[Step 9/11] Creating infer requests and preparing input data
[ INFO ] Create 1 infer requests took 0.16 ms
[ WARNING ] No input files were given for input 'data'!. This input will be filled with random values!
[ INFO ] Fill input 'data' with random values
[Step 10/11] Measuring performance (Start inference asynchronously, 1 inference requests using 1 streams for CPU, inference only: True, limits: 15000 ms duration)
[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).
[ INFO ] First inference took 9.21 ms
[Step 11/11] Dumping statistics report
Count: 4268 iterations
Duration: 15003.82 ms
Latency:
Median: 3.40 ms
AVG: 3.48 ms
MIN: 3.19 ms
MAX: 6.97 ms
Throughput: 284.46 FPS
Benchmark with Different Settings¶
benchmark_app
displays logging information that is not always
necessary. We parse the output with json and show a more compact result
The following cells show some examples of benchmark_app
with
different parameters. Some useful parameters are:
-d
Device to use for inference. For example: CPU, GPU, MULTI. Default: CPU-t
Time in number of seconds to run inference. Default: 60-api
Use asynchronous (async) or synchronous (sync) inference. Default: async-b
Batch size. Default: 1
Run ! benchmark_app --help
to get an overview of all possible
command line parameters.
In the next cell, we define a benchmark_model()
function that calls
benchmark_app
. This makes it easy to try different combinations. In
the cell below that, we display the available devices on the system.
NOTE: In this notebook we run benchmark_app for 15 seconds to give a quick indication of performance. For more accurate performance, we recommended running inference for at least one minute by setting the
t
parameter to 60 or higher, and runningbenchmark_app
in a terminal/command prompt after closing other applications. You can copy the benchmark command and paste it in a command prompt where you have activated theopenvino_env
environment.
def benchmark_model(model_xml, device="CPU", seconds=60, api="async", batch=1):
ie = Core()
model_path = Path(model_xml)
if ("GPU" in device) and ("GPU" not in ie.available_devices):
DeviceNotFoundAlert("GPU")
else:
benchmark_command = f"benchmark_app -m {model_path} -d {device} -t {seconds} -api {api} -b {batch}"
display(Markdown(f"**Benchmark {model_path.name} with {device} for {seconds} seconds with {api} inference**"))
display(Markdown(f"Benchmark command: `{benchmark_command}`"))
benchmark_output = %sx $benchmark_command
print("command ended")
benchmark_result = [line for line in benchmark_output
if not (line.startswith(r"[") or line.startswith(" ") or line == "")]
print("\n".join(benchmark_result))
ie = Core()
# Show devices available for OpenVINO Inference Engine
for device in ie.available_devices:
device_name = ie.get_property(device, "FULL_DEVICE_NAME")
print(f"{device}: {device_name}")
CPU: Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz
benchmark_model(model_path, device="CPU", seconds=15, api="async")
Benchmark mobilenet-v2-pytorch.xml with CPU for 15 seconds with async inference
Benchmark command:
benchmark_app -m /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -d CPU -t 15 -api async -b 1
command ended
Count: 4328 iterations
Duration: 15006.35 ms
Latency:
Throughput: 288.41 FPS
benchmark_model(model_path, device="AUTO", seconds=15, api="async")
Benchmark mobilenet-v2-pytorch.xml with AUTO for 15 seconds with async inference
Benchmark command:
benchmark_app -m /home/runner/open_model_zoo_models/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -d AUTO -t 15 -api async -b 1
command ended
Count: 4244 iterations
Duration: 15004.13 ms
Latency:
Throughput: 282.86 FPS
benchmark_model(model_path, device="GPU", seconds=15, api="async")
benchmark_model(model_path, device="MULTI:CPU,GPU", seconds=15, api="async")