Model Accuracy for INT8 and FP32 Precision¶
The following table shows the absolute accuracy drop that is calculated as the difference in accuracy between the FP32 representation of a model and its INT8 representation.
Intel® Core™ i9-10920X CPU @ 3.50GHZ (VNNI) |
Intel® Core™ i9-9820X CPU @ 3.30GHz (AVX512) |
Intel® Core™ i7-6700K CPU @ 4.0GHz (AVX2) |
Intel® Core™ i7-1185G7 CPU @ 4.0GHz (TGL VNNI) |
|||
---|---|---|---|---|---|---|
OpenVINO Benchmark Model Name |
Dataset | Metric Name | Absolute Accuracy Drop, % | |||
bert-base-cased | SST-2 | accuracy | 0.57 | 0.11 | 0.11 | 0.57 |
bert-large-uncased-whole-word-masking-squad-0001 | SQUAD | F1 | 0.76 | 0.59 | 0.68 | 0.76 |
brain-tumor- segmentation- 0001-MXNET |
BraTS | Dice-index@ Mean@ Overall Tumor |
0.10 | 0.10 | 0.10 | 0.10 |
brain-tumor- segmentation- 0001-ONNX |
BraTS | Dice-index@ Mean@ Overall Tumor |
0.11 | 0.12 | 0.12 | 0.11 |
deeplabv3-TF | VOC2012 | mean_iou | 0.03 | 0.42 | 0.42 | 0.03 |
densenet-121-TF | ImageNet | accuracy@top1 | 0.50 | 0.56 | 0.56 | 0.50 |
efficientdet-d0-tf | COCO2017 | coco_precision | 0.55 | 0.81 | 0.81 | 0.55 |
facenet- 20180408- 102900-TF |
LFW_MTCNN | pairwise_ accuracy _subsets |
0.05 | 0.12 | 0.12 | 0.05 |
faster_rcnn_ resnet50_coco-TF |
COCO2017 | coco_ precision |
0.16 | 0.16 | 0.16 | 0.16 |
googlenet-v3-tf | ImageNet | accuracy@top1 | 0.01 | 0.01 | 0.01 | 0.01 |
googlenet-v4-tf | ImageNet | accuracy@top1 | 0.09 | 0.06 | 0.06 | 0.09 |
mask_rcnn_resnet50_ atrous_coco-tf |
COCO2017 | coco_orig_precision | 0.02 | 0.10 | 0.10 | 0.02 |
mobilenet- ssd-caffe |
VOC2012 | mAP | 0.51 | 0.54 | 0.54 | 0.51 |
mobilenet-v2-1.0- 224-TF |
ImageNet | acc@top-1 | 0.35 | 0.79 | 0.79 | 0.35 |
mobilenet-v2- PYTORCH |
ImageNet | acc@top-1 | 0.34 | 0.58 | 0.58 | 0.34 |
resnet-18- pytorch |
ImageNet | acc@top-1 | 0.29 | 0.25 | 0.25 | 0.29 |
resnet-50- PYTORCH |
ImageNet | acc@top-1 | 0.24 | 0.20 | 0.20 | 0.24 |
resnet-50- TF |
ImageNet | acc@top-1 | 0.10 | 0.09 | 0.09 | 0.10 |
ssd_mobilenet_ v1_coco-tf |
COCO2017 | coco_precision | 0.23 | 3.06 | 3.06 | 0.17 |
ssdlite_ mobilenet_ v2-TF |
COCO2017 | coco_precision | 0.09 | 0.44 | 0.44 | 0.09 |
ssd-resnet34- 1200-onnx |
COCO2017 | COCO mAp | 0.09 | 0.08 | 0.09 | 0.09 |
unet-camvid- onnx-0001 |
CamVid | mean_iou@mean | 0.33 | 0.33 | 0.33 | 0.33 |
yolo-v3-tiny-tf | COCO2017 | COCO mAp | 0.05 | 0.08 | 0.08 | 0.05 |
yolo_v4-TF | COCO2017 | COCO mAp | 0.03 | 0.01 | 0.01 | 0.03 |
The table below illustrates the speed-up factor for the performance gain by switching from an FP32 representation of an OpenVINO™ supported model to its INT8 representation.
Intel® Core™ i7-8700T |
Intel® Core™ i7-1185G7 |
Intel® Xeon® W-1290P |
Intel® Xeon® Platinum 8270 |
||
---|---|---|---|---|---|
OpenVINO benchmark model name |
Dataset | Throughput speed-up FP16-INT8 vs FP32 | |||
bert-base-cased | SST-2 | 1.5 | 3.0 | 1.4 | 2.4 |
bert-large-uncased-whole-word-masking-squad-0001 | SQUAD | 1.7 | 3.2 | 1.7 | 3.3 |
brain-tumor- segmentation- 0001-MXNET |
BraTS | 1.6 | 2.0 | 1.9 | 2.1 |
brain-tumor- segmentation- 0001-ONNX |
BraTS | 2.6 | 3.2 | 3.3 | 3.0 |
deeplabv3-TF | VOC2012 | 1.9 | 3.1 | 3.5 | 3.8 |
densenet-121-TF | ImageNet | 1.7 | 3.3 | 1.9 | 3.7 |
efficientdet-d0-tf | COCO2017 | 1.6 | 1.9 | 2.5 | 2.3 |
facenet- 20180408- 102900-TF |
LFW_MTCNN | 2.1 | 3.5 | 2.4 | 3.4 |
faster_rcnn_ resnet50_coco-TF |
COCO2017 | 1.9 | 3.7 | 1.9 | 3.3 |
googlenet-v3-tf | ImageNet | 1.9 | 3.7 | 2.0 | 4.0 |
googlenet-v4-tf | ImageNet | 1.9 | 3.7 | 2.0 | 4.2 |
mask_rcnn_resnet50_ atrous_coco-tf |
COCO2017 | 1.6 | 3.6 | 1.6 | 2.3 |
mobilenet- ssd-caffe |
VOC2012 | 1.6 | 3.1 | 2.2 | 3.8 |
mobilenet-v2-1.0- 224-TF |
ImageNet | 1.5 | 2.4 | 2.1 | 3.3 |
mobilenet-v2- PYTORCH |
ImageNet | 1.5 | 2.4 | 2.1 | 3.4 |
resnet-18- pytorch |
ImageNet | 2.0 | 4.1 | 2.2 | 4.1 |
resnet-50- PYTORCH |
ImageNet | 1.9 | 3.5 | 2.1 | 4.0 |
resnet-50- TF |
ImageNet | 1.9 | 3.5 | 2.0 | 4.0 |
ssd_mobilenet_ v1_coco-tf |
COCO2017 | 1.7 | 3.1 | 2.2 | 3.6 |
ssdlite_ mobilenet_ v2-TF |
COCO2017 | 1.6 | 2.4 | 2.7 | 3.2 |
ssd-resnet34- 1200-onnx |
COCO2017 | 1.7 | 4.0 | 1.7 | 3.2 |
unet-camvid- onnx-0001 |
CamVid | 1.6 | 4.6 | 1.6 | 6.2 |
yolo-v3-tiny-tf | COCO2017 | 1.8 | 3.4 | 2.0 | 3.5 |
yolo_v4-TF | COCO2017 | 2.3 | 3.4 | 2.4 | 3.1 |