Cut Datasets¶
Original datasets are considerably big in size. If you want to save your time when loading original datasets into the DL Workbench, cut them as described in the following sections.
To learn more about dataset types supported by the DL Workbench, their structure, and how to download them, refer to Dataset Types.
ImageNet Dataset¶
Cut ImageNet Dataset¶
Save the script to cut datatsets to the following directory:
Linux*, macOS*:
/home/<user>/Work
. Replace<user>
with your username.Windows* :
C:\Work
Put the downloaded dataset in the same directory.
Follow instructions for your operating system.
Note
Replace <user>
with your username. Run the following command in a terminal for Linux, macOS and in the Windows PowerShell* for Windows.
python /home/<user>/Work/cut_dataset.py \
--source_archive_dir=/home/<user>/Work/imagenet.zip \
--output_size=20 \
--output_archive_dir=/home/<user>/Work/subsets \
--dataset_type=imagenet \
--first_image=10
python C:\\Work\\cut_dataset.py `
--source_archive_dir=C:\\Work\\imagenet.zip `
--output_size=20 `
--output_archive_dir=C:\\Work\\subsets `
--dataset_type=imagenet `
--first_image=10
This command runs the script with the following arguments:
Parameter |
Explanation |
---|---|
|
Full path to a downloaded archive |
|
Number of images to be left in a smaller dataset |
|
Full directory to the smaller dataset, excluding the name |
|
Type of the source dataset |
|
Optional . The index of the image to start cutting from. Specify if you want to split your dataset into training and validation subsets. The default value is 0. |
Pascal Visual Object Classes (VOC) Dataset¶
Cut Pascal VOC Dataset¶
Save the script to cut datatsets to the following directory:
Linux*, macOS*:
/home/<user>/Work
. Replace<user>
with your username.Windows* :
C:\Work
Put the downloaded dataset in the same directory.
Follow instructions for your operating system.
Note
Replace <user>
with your username. Run the following command in a terminal for Linux, macOS and in the Windows PowerShell* for Windows.
python /home/<user>/Work/cut_dataset.py \
--source_archive_dir=/home/<user>/Work/voc.tar.gz \
--output_size=20 \
--output_archive_dir=/home/<user>/Work/subsets \
--dataset_type=voc \
--first_image=10
python C:\\Work\\cut_dataset.py `
--source_archive_dir=C:\\Work\\voc.tar.gz `
--output_size=20 `
--output_archive_dir=C:\\Work\\subsets `
--dataset_type=voc `
--first_image=10
This command runs the script with the following arguments:
Parameter |
Explanation |
---|---|
|
Full path to a downloaded archive |
|
Number of images to be left in a smaller dataset |
|
Full directory to the smaller dataset, excluding the name |
|
Type of the source dataset |
|
Optional . The index of the image to start cutting from. Specify if you want to split your dataset into training and validation subsets. The default value is 0. |
Common Objects in Context (COCO) Dataset¶
Cut COCO Dataset¶
Save the script to cut datatsets to the following directory:
Linux*, macOS*:
/home/<user>/Work
. Replace<user>
with your username. > NOTE : Replace<user>
with your username.Windows* :
C:\Work
Put the downloaded archives in the same directory.
Follow instructions for your operating system.
Note
Replace <user>
with your username. Run the following command in a terminal for Linux, macOS and in the Windows PowerShell* for Windows.
python /home/<user>/Work/cut_dataset.py \
--source_images_archive_dir=/home/<user>/Work/coco_images.zip \
--source_annotations_archive_dir=/home/<user>/Work/coco_annotations_.zip \
--output_size=20 \
--output_archive_dir=/home/<user>/Work/subsets \
--dataset_type=coco \
--first_image=10
python C:\\Work\\cut_dataset.py `
--source_images_archive_dir=C:\\Work\\coco_images.zip `
--source_annotations_archive_dir=C:\\Work\\coco_annotations_.zip `
--output_size=20 `
--output_archive_dir=C:\\Work\\subsets `
--dataset_type=coco `
--first_image=10
This command runs the script with the following arguments:
Parameter |
Explanation |
---|---|
|
Full path to the downloaded archive with images, including the name |
|
Full path to the downloaded archive with annotations, including the name |
|
Number of images to be left in a smaller dataset |
|
Full directory to the smaller dataset excluding the name |
|
Type of the source dataset |
|
Optional . The number of the image to start cutting from. Specify if you want to split your dataset into training and validation subsets. The default value is 0. |